If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-649=0
a = 2; b = 2; c = -649;
Δ = b2-4ac
Δ = 22-4·2·(-649)
Δ = 5196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5196}=\sqrt{4*1299}=\sqrt{4}*\sqrt{1299}=2\sqrt{1299}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1299}}{2*2}=\frac{-2-2\sqrt{1299}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1299}}{2*2}=\frac{-2+2\sqrt{1299}}{4} $
| 0.5+1.7=p | | g-2.6=2.4 | | X=4+r/2+3r | | g-6=4/5 | | p+2=5.5 | | 2(-5x-12)=3x+18 | | -5x-12=3x+18 | | 6-3.1=n | | 4.5=6.5(1-x) | | x^2-2x-75=5 | | 10x-15=10x+3+2x-6=180 | | 12x5=5+12x | | 22+14=3v | | 36=-5y+3(y+8) | | g/17=-27 | | 5m^-45m+40=0 | | 10a^2+20a-1=0 | | -3(s+9)=3 | | .3d+7.9=9.1 | | r+20+9r=-20-10 | | 26=(l+5) | | 52+3x-12=70 | | 19+y=29 | | 26=2(l+3) | | 41=w/3 | | 55=4j | | 0=x/13 | | 14=w+12 | | g/38=0 | | 1=p/25 | | 17=10+t | | (43)+(x-7)=90 |